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Thermodynamics of moving Gibbs dividing surfaces

Liqiu Wang
Department of Mechanical Engineering, University of Hong Kong, Hong Kong

~Received 15 January 1996; revised manuscript received 31 October 1996!

A systematic continuum approach is proposed to develop models of moving interfaces. The approach uses
a zero-mass Gibbs dividing surface as an approximation of real three-dimensional interfacial region, introduces
quantities representing the net action of two bulk phases on the interface, and employs the second law of
thermodynamics to provide required constitutive equations. To demonstrate the approach, a general thermo-
dynamic model is developed for two-dimensional moving interfaces.@S1063-651X~97!11102-3#

PACS number~s!: 68.10.2m, 82.65.Dp, 83.20.Bg, 44.60.1k
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I. INTRODUCTION

Moving interfaces arise in a variety of natural and indu
trial processes. Examples are growth boundaries of cry
ice, and grain, and melting boundaries of ice, snow, a
metal. They also appear in the multiphase flows and mov
boundary problems. The correct description of their mot
is thus of considerable practical importance. Because of
complexities of the problem@1#, initial attempts to describe
physical processes have relied on descriptive models
more or less intuitive or empirical nature@2–4#. These mod-
els are generally limited in application to particular proble
and usually have a narrow range of validity. The formulati
of these models typically begins with some empirical
sumptions regarding kinematics of moving interfaces.
well, most of them are kinematic rather dynamic models
nature.

A second possible approach to modeling the moving
terfaces can be referred to as molecular models. In
method, the statistical theory is used to obtain a phenome
logical description of interfaces from a molecular point
view. This method has been successfully used to model s
fluid interfaces@5–9#. However, we are not aware of an
work on the moving interfaces.

A third approach employs continuum mechanics@10–15#.
In this approach, a moving interface is viewed as a sepa
two-dimensional material surface with possible differe
constitutive equations from those applicable outside the
terfacial region. Associated with the surface are the us
thermodynamic quantities, which are continuous along
surface but may be discontinuous across the surface.
classical conservation laws of continuum mechanics al
with the constitutive equations govern the motion of the
terface, resulting in a relatively general dynamic model.

Of the three methods, the continuum mechanical appro
appears to provide the best framework to advance the un
standing of the moving interfaces. However, previous wo
in this group appear to suffer three fundamental defects,
sulting in a set of complex equations. Specification of a nu
ber of additional constitutive equations is also required
complete the model. First, these works fail to select a pro
Gibbs dividing surface as the representative of the real th
dimensional region@16,17#. In fact, most works do not eve
mention what kind of Gibbs dividing surface is used. Typ
cally, a material surface withg as the surface density is use
551063-651X/97/55~2!/1732~7!/$10.00
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to represent the real three-dimensional region, resulting
complicated set of equations. In the application of such m
els,g is usually set to zero to simplify the model@10#. As-
sociated with this, the relation between the Gibbs dividi
surface used and the classicalsurface tensionsurface is not
clear.

Second, these works have immediately focused on p
ticular types of material surfaces such as Newtonian surf
fluids, and imposed constitutive relations for such particu
surfaces to relate capillary force to the strain in the surf
by introducing some parameters such as surface dilatio
viscosity and surface shear viscosity which are difficult
determine. Thus, early in the derivations, assumptions ab
constitutive relations restrict the equations developed to
tain materials or special cases. The steps to extend the e
tions to more general situations are usually rather obsc
Furthermore, the justification for such assumptions is
open question. Third, these works modeled the action of
bulk phases on the interface for each side of the interf
rather than modeling the net effect of two bulk phases.
modeling each side, the bulk constitutive equations are u
in the neighborhood of the phase interface to relate stres
the kinematic quantity of the bulk phase for some particu
material without justification. This, once again, limits th
model developed to some particular cases.

The motivation for the present work comes from the d
sire to provide a systematic, continuum approach for dev
oping models of moving interfaces in which the three defe
are avoided. The approach is based on two fundamenta
sumptions. First, a real three-dimensional~3D! interfacial re-
gion may be approximated by a zero-mass Gibbs divid
surface. The cumulative effects associated with this repla
ment are taken into account by the assignment to the di
ing surface of excess quantities. The justification of this
proximation and the existence of such surfaces have b
well described in@16–18#. The advantage of this choice ca
be seen in Sec. 2.2. It is worthy to note that the class
concept of equilibrium surface tension is also based on
kind of dividing surface@16–17#. Hereafter when we say th
phase interface, we mean this zero-mass Gibbs dividing
face. Second, we assume that all thermodynamic quant
are continuous on the interfaces although they may be
continuous across the interfaces. This is a reasonable
sumption on the physical grounds of practical situations, a
is used in all continuum approaches.
1732 © 1997 The American Physical Society
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55 1733THERMODYNAMICS OF MOVING GIBBS DIVIDING SURFACES
To demonstrate the approach, we develop one thermo
namic model for the moving interfaces. The model cons
of three basic parts: the conservation laws, an interfacial
sion of the second law of thermodynamics, and constitu
equations. The second law is used to obtain thermodyna
cally sound constitutive equations that relate the dyna
quantities to the kinematic ones. The conservation laws
the constitutive equations, with some kinematic relatio
from the differential geometry, form the equations govern
the motion of interfaces.

In developing the model, we made the following two a
sumptions to highlight the crucial aspects of the approa
First, we restrict our attention to the 2D interface motions
avoid the geometrical complications associated with the m
tion of surfaces in 3D space. By this assumption, a mov
interface becomes a moving curve in 2D space whose mo
must satisfy some classical fundamental laws. Secondly
assume that the motion of the bulk phases can be negle
compared with the motion of the interface. This happe
when the volumes of the bulk phases are large enough
this assumption, some mathematical results will be sim
fied. Unlike the two fundamental assumptions, all these
sumptions are only for the sake of simplicity. The approa
is systematic in the sense that these simplifying assumpt
may be relaxed if more general results are desired.

II. THERMODYNAMIC MODEL

A. Kinematics

To develop a dynamic model for the interface, we need
know its kinematics first. This is well developed in the fie
of differential geometry because our 2D moving interface
a moving curve in 2D space. Here we just list some res
from the differential geometry that will be used in our mod
@19,20#. Geometry relations:

t5r s , ~1!

k5as , ~2!

ts5kn, ~3!

ns52kt. ~4!

Kinematic relations:

us52kv, ~5!

a t1uas5vs , ~6!

kt1uks5vss1k2v. ~7!

In Eqs.~1!–~7!, r is position vector,s is arch length,n is
the unit normal vector,a is the angle betweenn ande1, k is
curvature, which is the derivative ofa with respect tos @Eq.
~2!#, t is a unit tangent, which is the derivative ofr with
respect tos, andu andv are the tangential~alongt! and the
normal ~alongn! components of interface velocity vectorv
~Fig. 1!. Hereafter, the subscripts means the derivative with
respect tos holding time t fixed, and the subscriptt repre-
sents the derivative with respect tot holding s fixed. Thus
Eqs. ~3! and ~4! relatet, n, andk at any point of the inter-
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face. Equations~5!–~7! relateu, v, andk at any point of the
interface. In other words, they relate the motion of an int
face with its shape.

B. Governing laws

What we know about the motion of an interface is
satisfaction of classical laws: conservation of mass, lin
momentum, and rotational momentum, and the first and s
ond laws of thermodynamics. Here the rotational moment
is also called angular momentum or moment of momentu
The definition of our interface, i.e., the zero-mass Gibbs
terface, has already ensured the mass conservation. Thu
only need to use the conservation of linear and rotatio
momenta and the first and second laws of thermodynamic
restrict the motion of the interface.

1. Conservation of linear and rotational momenta

Consider an infinitesimal subinterfacei as shown in Fig.
2~a!. The forces acting oni are either internal traction, which
acts at two end points ofi and comes from the cumulativ
effect associated with the replacement of a real 3-D inte
cial region by a Gibbs dividing surface, or external force
which act on every point ofi and come from the action o
each of the two bulk phases. The former we denote by
capillary forcec(s,t). The net effect of the latter we charac
terize by an interactive forcea(s,t) @per unit arc length, Fig.
2~b!# and an interactive momentm(s,t) @per unit arc length,
Fig. 2~b!# because the motion of the interface depends on
resulting or combined forces, not on each single force. T
introduction ofa andm is unique to this approach in th
sense that the previous approaches in the literature mod
these forces on either side ofi separately. Since the interfac
has zero mass, the other force fields such as the gravitati
force field do not contribute any force toi .

FIG. 1. A moving interface.

FIG. 2. An infinitesimal subinterfacei .
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1734 55LIQIU WANG
Applying the conservation laws of linear and rotation
momenta toi yields

E
i
ads1E

] i
c50, ~8!

E
i
mds1E

i
r3ads1E

] i
r3c50, ~9!

where] i represents the boundary ofi . For the 2D case, it
consists of two end points of i . Thus
*] ij5j(s2 ,t)2j(s1 ,t). Also, * ijds5*s1(t)

s2(t)j(s,t)ds.

Note that our interface has zero mass; the rate of cha
in the linear and rotational momenta ofi vanish. This leads
to a simple right side of Eqs.~8! and ~9!. To obtain a local
form of Eqs.~8! and ~9!, change the integrations over] i to
the integrations overi by the divergence theorem, which ca
be invoked because of our continuous assumption of
quantities alongi . Then the validity of Eqs.~8! and~9! for all
i , with the continuous assumption of all quantities alongi ,
allows us to appeal the localization theorem to obtain

a1cs50, ~10!

m1r s3c50. ~11!

A component form of Eqs.~10! and~11! can be obtained
by applying Eqs.~1!–~4! and decomposinga andc along t
andn. The result is as follows:

ss1tk1 f50, ~12!

ts2sk1g50, ~13!

s52m, ~14!

in which f andg are the normal and tangential compone
of a while s andt are the normal and tangential compone
of c. Note thats causes surface shear andt causes surface
tension.

2. The first and second laws of thermodynamics

The dynamics of the interface is determined by three
terfacial fields: interactive forcea(s,t), capillary force
c(s,t), and interactive momentm(s,t), which are interre-
lated through the conservation laws@Eqs. ~12!–~14!#. The
thermodynamics of the interface is described by three sca
valued interfacial fields defined on the interface for all tim
i.e., the interfacial energyc~x,t!, the interfacial entropyi~x,t!
and the apparent heat fluxq~x,t!. There exists a fundamenta
question regarding the nature of heat conduction. The cla
cal theory ~the Fourier law! regards heat conduction as
diffusion process, which leads to a paradox, namely, an
finite velocity of heat propagation for a time duration. T
duration is of the order 1028–10212 s for homogeneous sub
stance@21# and 1023–103 s for nonhomogeneous materia
@22,23#. This paradox was first observed by Cattaneo@24#.
Since then, several theories have been developed to elim
it. The theory ofsecond sound, for example, assumes tha
heat moves as a wave rather than a diffusion proces
eliminate theparadox of instantaneous propagation of the
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mal disturbances. A review of the literature in this area ca
be found in@25#. To avoid this uncertainty~i.e., which theory
is more exact to what takes place in reality!, we use both hea
flux field and temperature field as the thermodynamic qu
tities instead of just temperature. It is up to the user to p
vide the constitutive relation to relate heat flux to tempe
ture.

Consider a two-phase control volumeB consisting ofB1
of phase 1,B2 of phase 2, and interfacei ~Fig. 3!, and let
e~x,t! andS~x,t! be the energy and entropy of bulk phas
per unit area. Then,

E
B11B2

e~x,t !da1E
ı
cds, ~15!

E
B11B2

S~x,t !da1E
i
ids ~16!

are the internal energy and the internal entropy ofB.
Let q~x,t! andT~x,t! be the bulk heat flux and the bul

absolute temperature, respectively. Then

E
]B
q•Nds, ~17!

E
]B

q

T
•Nds ~18!

represent the net heat and thermal entropy flux out ofB by
bulk heat conduction across]B, respectively. HereN is the
outward unit normal vector of]B.

Neglecting the heat conduction along the interface,
heat and thermal entropy flux through] i are those resulting
from the tangential motion of the edge ofi . Suppose that the
temperatureT is continuous across the interface~but we al-
low the other bulk fields to suffer jump discontinuities acro
the interface!, they can be written as

E
] i

qu ~19!

and

E
] i
T21qu. ~20!

For the case that the motion of the bulk material can
neglected comparing with the motion of the interface, t
power expended onB by the bulk forces acting on]B is
negligible. As well, the interactive forcea and momentm do

FIG. 3. A two-phase control volumeB.
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55 1735THERMODYNAMICS OF MOVING GIBBS DIVIDING SURFACES
not expend power onB since they are internal toB by noting
that they come from the mechanical action oni of each of
two bulk phases. Therefore, the only source of power foB
comes from the capillary forces on] i , which can be written
as

E
] i
c•v. ~21!

The first law of thermodynamics requires the conservat
of energy forB, yielding

d

dt H EB11B2

eda1E
i
cdsJ 52E

]B
q•Nds1E

] i
qu1E

] i
c•v.

~22!

The second law of thermodynamics requires that the entr
generation, which is the sum of the change of entropy oB
and the outflow of entropy fromB minus the thermal entropy
flux, is never less than zero~note that the work exchang
does not cause change in entropy!. This leads to

d

dt H EB11B2

Sda1E
i
idsJ >2E

]B
T21q•Nds1E

]ı
T21qu,

~23!

which must hold for all two-phase control volumeB.
To obtain an interfacial form of the first and second la

of thermodynamics, we shrinkB to i by letting B1→0 and
B2→0. This yields

d

dt Eic ds1E
] i
uc5E

i
@e#v ds2E

i
@q#•nds

1E
] i

qu1E
] i
c•v, ~24!

d

dt Ei i ds1E
] i
uı>E

i
@S#v ds2E

i
T21q•n ds1E

] i
T21qu,

~25!

which are valid for all moving subinterfacesi . Here [e] is
the jump ine across the interface, etc., andv is the normal
velocity component of the interface.

The interfacial first and second laws~24! and ~25! repre-
sent the first and the second laws for a subinterfacei . *ic ds
and*iids are the energy and entropy ofi while *] iuc and
*] iui represent the outflow rate of interfacial energy and
tropy from i . *i [e]v ds and *i [S]v ds represent flows of
bulk energy and bulk entropy intoi while 2*i@q#•n ds and
2*iT

21@q#•n ds account for heat and thermal entropy flux
i by bulk material through heat conduction.*] iqu and
*] iT

21qu represent heat and thermal entropy flux toi by the
tangential motion of] i . *] ic•v is the power expended oni by
the capillary force.

Note that
n

y

-

d

dt Eic ds5E
] i
uc1E

i
c t~s,t !ds5E

] i
uc1E

i
~c02ucs!ds

5E
] i
uc1E

i
c0 ds2E

i
ucs ds5E

i
~c01cus!ds

5E
i
~c02ckv !ds ~26!

in which Eq. ~5! is used, and superscript 0 denotes the f
time derivative.

Also

E
] i
c•v5E

] i
tu1E

] i
sv5E

] i
tu1E

i
~ssv1svs!ds ~27!

in which the divergence theorem is used. Using Eq.~12! and
vs5a0 ~angular velocity!, Eq. ~27! can be written as

E
] i
c•v5E

] i
tu2E

i
~ fv1tkv2sa0!ds. ~28!

Applying Eqs.~26! and ~28! to Eqs.~24! and ~25! yields

E
i
$c02sa02~c2t!kv1~ f2@e# !v1@q#•n%ds

1E
] i

~c2q2t!u50, ~29!

E
ı
$i02ikv2@S#v1T21@q#•n%ds1E

] i
~i2T21q!u>0

~30!

for all subinterfacesi .
Note that Eqs.~29! and~30! must hold for arbitrary] i and

t; it is obvious that

c5q1t, ~31!

i5T21q, ~32!

which represents energy balance and entropy at the edg
the subinterface. Equation~31! also states that the interfacia
energy in terms of per unit arc length is equal to the sum
the apparent heat flux and surface tension.

Combining Eq.~31! with Eq. ~32! gives

t5F, ~33!

with

F5c2Ti ~34!

as the Helmholtz free energy of the interface.
By Eqs.~31! and ~32!, Eqs.~29! and ~30! reduce to

E
i
Yds50, ; i ~35!

E
i
Jds>0, ; i ~36!
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where

Y5c02sa02~c2t!kv1~ f2@e# !v1@q#•n ~37!

and

J5i02ikv2@S#v1T21@q#•n. ~38!

To obtain a local form of Eqs.~35! and ~36!, consider a
subinterfacei «~t! at arbitrary instantt, which has an arch
length« ~>0! centered ats0 ~Fig. 4!.

Let

I 1«
5UY~s0 ,t!2

1

« E
i «

Y~s,t!dsU, ~39!

I 2«
5UJ~s0 ,t!2

1

« E
ı«

J~s,t!dsU. ~40!

Then

I 1«
>0, ~41!

I 2«
>0. ~42!

SinceY~s,t! andJ~s,t! are continuous ons by our funda-
mental assumption,

I 1«
5U1« E

i «

@Y~s0 ,t!2Y~s,t!#dsU
<
1

« E
i «

max
sP i «

u@Y~s0 ,t!2Y~s,t!#uds

5max
sP i «

u@Y~s0 ,t!2Y~s,t!#u,

I 2«
5U1« E

i «
@J~s0 ,t!2J~s,t!#dsU

<
1

« E
i «

max
sP i «

u@J~s0 ,t!2J~s,t!#uds

5max
sP i «

u@J~s0 ,t!2J~s,t!#u,

which tend to zero as«→0. Hence we have

I 1«
<0, ~43!

I 2«
<0 ~44!

as«→0.
To satisfy Eqs.~41!–~44!, we have that

FIG. 4. A subinterfacei « .
Y~s0 ,t!5 lim
«→0

1

« E
i «

Y~s,t!ds ~45!

and

J~s0 ,t!5 lim
«→0

1

« E
i «

J~s,t!ds, ~46!

which yield, after using Eqs.~35! and ~36!,

and

Y~s0 ,t!50, ~47!

J~s0 ,t!>0. ~48!

Sinces0,t are arbitrary, we have

Y~s,t!50, ~49!

J~s,t!>0, ~50!

i.e.,

c02sa02~c2t!kv1~ f2@e# !v1@q#•n50, ~51!

i02ikv2@S#v1T21@q#•n>0. ~52!

By the third law of thermodynamics,T.0. Inequality
~52! can thus be rewritten as

Ti02Tikv2T@S#v1@q#•n>0. ~53!

To eliminate the vector-valuedq, which is a quantity asso
ciated with the bulk field, subtracting Eq.~53! from Eq. ~51!
yields another form of the second law of thermodynamic

F02sa01iT01~ f2@h#!v<0, ~54!

whereh is the bulk Helmholtz free energy, i.e.,

h5e2TS. ~55!

C. Constitutive equations

Equations~12!–~14! and~51! form the conservation equa
tions of the thermodynamic model. To be truly useful for t
description of the moving interfaces, they must be supp
mented by constitutive equations to relatef , g, s(m), t(F),
c, andq to the kinematic and thermal quantities of the inte
face. Such constitutive equations are usually provid
through some empirical laws such as Fourier law of h
conduction for heat flux and Newton law of stress for Ne
tonian fluids. At present, we have no experiments by me
of which we can study the constitutive equations in t
neighborhood of an interface. The previous works then in
itively imposed some constitutive equations similar to tho
applicable in bulk phases by introducing concepts such
Newtonian surface fluids@10#. In the present work, we us
the second law of thermodynamics@inequality ~54!# to pro-
vide the required constitutive equations. The justificati
comes from the fact that the motion of the interface is co
trolled not only by the conservation laws of mass, line
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55 1737THERMODYNAMICS OF MOVING GIBBS DIVIDING SURFACES
momentum, rotational momentum, and energy, but also
the other fundamental laws such as the second law of t
modynamics.

An examination of the inequality~54! shows that the sec
ond law of thermodynamics does not place any restriction
c andg explicitly. However, by Eqs.~13! and ~34!, we can
obtain the required constitutive equations forc andg once
we have constitutive equations ofF~t!, s, f , and i. The
constitutive equation ofq can be provided by several theo
ries. The classical Fourier law, for example, states that

q52K¹T, ~56!

whereK is the conductivity tensor, and¹ is the gradient.
The inequality~54! indicates that the proper independe

variables area, v, andT. Consequently, we suppose, as i
terfacial constitutive equations, thatF, s, f , and i depend
smoothly on the orientation of the interface through a dep
dence ona, on the kinematics of the interface through
dependence onv and on the thermal behavior through a d
pendence onT, i.e.,

F5F~a,v,T!, s5s~a,v,T!, f5 f ~a,v,T!,

i5i~a,v,T!. ~57!

These, with the aid of Eqs.~13!, ~14!, ~31!, and~34!, induce
additional constitutive equations fort, g, m, q, andc.

The second law of thermodynamics~54! requires

~Fa2s!a01Fvv
01~FT1i !T01~ f2@h#!v<0 ~58!

for all moving subinterfaces that satisfy the conservat
laws. Since the fieldsa, v, T, a0, v0, andT0 can have arbi-
trary values at any point and time, we takea050, v0Þ0,
T050, andv50. Then Eq.~58! reduces to

Fv~a,v,T!v0<0, ;v0Þ0. ~59!

This implies that

F5F~a,T!. ~60!

Similarly, we have

s5Fa~a,T!, ~61!

i52FT~a,T!. ~62!

Applying Eqs.~60!–~62! into Eq. ~58! yields

$ f ~a,v,T!2@h#%v<0, ;a, v, and T. ~63!

Let

f~v !5@h#2 f ~a,v,T!. ~64!

Thus

f~v !v>0, ~65!

which implies thatf(v)v has a minimum atv50. This re-
quires
y
r-

n

t

-

-

n

d~fv !

dv U
v50

5f~0!1vf8~v !uv5050,

which gives

f~0!50. ~66!

Hence,

n~a,v,T!5
f~v !

v
~67!

is well defined. This concludes that

f~v !5n~a,v,T!v,

i.e.,

f ~a,v,T!5@h#2n~a,v,T!v. ~68!

Note thatf(v) andv always have the same sign@Eq. ~65!#;
Eq. ~67! concludes that

n~a,v,T!>0. ~69!

Conversely, Eqs.~60!–~62!, ~68!, and~69! yield Eq. ~58! in
all processes.

By Eqs.~2!, ~13!, ~33!, and~61!, we have

g5i~a,T!Ts , ~70!

which is not zero if temperature varies along the interfa
Also, Eq. ~34! yields

c5F~a,T!2TFT~a,T!. ~71!

Equations~60!–~62!, ~68!, and~71! show that~1! F, s, i,
and c cannot depend onv explicitly, ~2! surface shear is
always equal to the derivative ofF with respect toa, and~3!
the interfacial entropyi is always equal to the derivative ofF
with respect toT. These are important because they imp
that ~1! t(F), s, i, andc in the dynamic situation assum
their values in the static situation~this will significantly sim-
plify the experiments to determine them!, ~2! a gradient ofF
or t will cause surface shear, and~3! the variation ofF or t
with temperatureT will result in an interfacial entropy.

By Eqs. ~32!, ~51!, ~60!–~62!, and ~68!, the left side of
Eq. ~30! reduces to*inv

2 so thatnv2 is the total entropy
generation per unit length due to the irreversibility of t
process. Like conductivity and viscosity,n is to be deter-
mined through experiments. However, for small values ofv,
we can approximaten(a,v,T) by n~a,0,T!. On the other
hand, we can impose other principles such as frame indif
ence to obtain the form of dependence ofn ona, v, andT. It
is our belief that all the details concerning constitutive eq
tions can be obtained through imposing enough fundame
laws.

By collecting all results, we have the conservation eq
tions ~12!–~14!, ~51! and the constitutive equations~32!,
~33!, ~60!–~62!, and~68!–~71! for the moving interfaces. All
these, with the kinematic relations~5!–~7!, form a completed
thermodynamic model of the moving interfaces. They can
used to predict and control the motion, shape, and chara
istics of the moving interfaces. They can also be employed
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the microscopic model for interfaces in the multiphase flow
and as the boundary conditions in moving and free bound
problems.

III. CONCLUDING REMARKS

A systematic, continuum approach is set up to develop
thermodynamic model of the moving interfaces. The a
proach differs from the others mainly in three aspects:~1!
using zero-mass Gibbs interfaces as the approximation o
real 3-D interfacial region;~2! introducinga andm to reflect
the net action of two bulk phases on the interface; and~3!
employing the second law of thermodynamics to derive
required constitutive equations.

The proposed approach is used to develop a thermo
namic model for two-dimensional moving interfaces. T
,
ry

e
-

he

e

y-

model consists of three basic parts: the conservation la
the second law of thermodynamics, and constitutive eq
tions. The conservation laws, the constitutive equations,
some kinematic relations from the differential geometry
gether form the governing equations of moving interfac
Such equations can be used to predict and control the
tion, shape, and characteristics of interfaces appearing
various natural and industrial processes.
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