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Thermodynamics of moving Gibbs dividing surfaces
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A systematic continuum approach is proposed to develop models of moving interfaces. The approach uses
a zero-mass Gibbs dividing surface as an approximation of real three-dimensional interfacial region, introduces
guantities representing the net action of two bulk phases on the interface, and employs the second law of
thermodynamics to provide required constitutive equations. To demonstrate the approach, a general thermo-
dynamic model is developed for two-dimensional moving interfag®$063-651X97)11102-3

PACS numbegps): 68.10—m, 82.65.Dp, 83.20.Bg, 44.66k

[. INTRODUCTION to represent the real three-dimensional region, resulting in a
complicated set of equations. In the application of such mod-
Moving interfaces arise in a variety of natural and indus-els, y is usually set to zero to simplify the modgl0]. As-
trial processes. Examples are growth boundaries of crystagociated with this, the relation between the Gibbs dividing
ice, and grain, and melting boundaries of ice, snow, andurface used and the classisairface tensiorsurface is not
metal. They also appear in the multiphase flows and movinglear.
boundary problems. The correct description of their motion Second, these works have immediately focused on par-
is thus of considerable practical importance. Because of thecular types of material surfaces such as Newtonian surface
complexities of the problerfil], initial attempts to describe fluids, and imposed constitutive relations for such particular
physical processes have relied on descriptive models of surfaces to relate capillary force to the strain in the surface
more or less intuitive or empirical natuf2—4]. These mod- by introducing some parameters such as surface dilational
els are generally limited in application to particular problemsviscosity and surface shear viscosity which are difficult to
and usually have a narrow range of validity. The formulationdetermine. Thus, early in the derivations, assumptions about
of these models typically begins with some empirical as-constitutive relations restrict the equations developed to cer-
sumptions regarding kinematics of moving interfaces. Adgain materials or special cases. The steps to extend the equa-
well, most of them are kinematic rather dynamic models intions to more general situations are usually rather obscure.
nature. Furthermore, the justification for such assumptions is an
A second possible approach to modeling the moving in-open question. Third, these works modeled the action of two
terfaces can be referred to as molecular models. In thibulk phases on the interface for each side of the interface
method, the statistical theory is used to obtain a phenomenaather than modeling the net effect of two bulk phases. In
logical description of interfaces from a molecular point of modeling each side, the bulk constitutive equations are used
view. This method has been successfully used to model statio the neighborhood of the phase interface to relate stress to
fluid interfaces[5—9]. However, we are not aware of any the kinematic quantity of the bulk phase for some particular
work on the moving interfaces. material without justification. This, once again, limits the
A third approach employs continuum mecharit8—15.  model developed to some particular cases.
In this approach, a moving interface is viewed as a separate The motivation for the present work comes from the de-
two-dimensional material surface with possible differentsire to provide a systematic, continuum approach for devel-
constitutive equations from those applicable outside the ineping models of moving interfaces in which the three defects
terfacial region. Associated with the surface are the usuadre avoided. The approach is based on two fundamental as-
thermodynamic quantities, which are continuous along theumptions. First, a real three-dimensio(&D) interfacial re-
surface but may be discontinuous across the surface. Thgion may be approximated by a zero-mass Gibbs dividing
classical conservation laws of continuum mechanics alongurface. The cumulative effects associated with this replace-
with the constitutive equations govern the motion of the in-ment are taken into account by the assignment to the divid-
terface, resulting in a relatively general dynamic model.  ing surface of excess quantities. The justification of this ap-
Of the three methods, the continuum mechanical approacproximation and the existence of such surfaces have been
appears to provide the best framework to advance the undewell described if16—18. The advantage of this choice can
standing of the moving interfaces. However, previous worksdbe seen in Sec. 2.2. It is worthy to note that the classical
in this group appear to suffer three fundamental defects, rezoncept of equilibrium surface tension is also based on this
sulting in a set of complex equations. Specification of a numkind of dividing surfacg 16—17. Hereafter when we say the
ber of additional constitutive equations is also required tgphase interface, we mean this zero-mass Gibbs dividing sur-
complete the model. First, these works fail to select a propeface. Second, we assume that all thermodynamic quantities
Gibbs dividing surface as the representative of the real threeare continuous on the interfaces although they may be dis-
dimensional regiof16,17]. In fact, most works do not even continuous across the interfaces. This is a reasonable as-
mention what kind of Gibbs dividing surface is used. Typi- sumption on the physical grounds of practical situations, and
cally, a material surface witly as the surface density is used is used in all continuum approaches.
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To demonstrate the approach, we develop one thermody-
namic model for the moving interfaces. The model consists
of three basic parts: the conservation laws, an interfacial ver-
sion of the second law of thermodynamics, and constitutive
equations. The second law is used to obtain thermodynami-
cally sound constitutive equations that relate the dynamic
guantities to the kinematic ones. The conservation laws and
the constitutive equations, with some kinematic relations
from the differential geometry, form the equations governing
the motion of interfaces.

In developing the model, we made the following two as-
sumptions to highlight the crucial aspects of the approach.
First, we restrict our attention to the 2D interface motions tog
avoid the geometrical complications associated with the mo-
tion of surfaces in 3D space. By this assumption, a movin
interface becomes a moving curve in 2D space whose motio
must satisfy some classical fundamental laws. Secondly, we
assume that the motion of the bulk phases can be neglected
compared with the motion of the interface. This happens
when the volumes of the bulk phases are large enough. B
this assumption, some mathematical results will be simpli-
fied. Unlike the two fundamental assumptions, all these as-
sumptions are only for the sake of simplicity. The approacl]
is systematic in the sense that these simplifying assumptio

FIG. 1. A moving interface.

ace. Equation$b)—(7) relateu, v, andk at any point of the
interface. In other words, they relate the motion of an inter-
qnace with its shape.

B. Governing laws

What we know about the motion of an interface is its

Yatisfaction of classical laws: conservation of mass, linear
momentum, and rotational momentum, and the first and sec-
ond laws of thermodynamics. Here the rotational momentum
s also called angular momentum or moment of momentum.

may be relaxed if more general results are desired.

IIl. THERMODYNAMIC MODEL

A. Kinematics

To develop a dynamic model for the interface, we need to
know its kinematics first. This is well developed in the field
of differential geometry because our 2D moving interface is
a moving curve in 2D space. Here we just list some result$

"Phe definition of our interface, i.e., the zero-mass Gibbs in-

terface, has already ensured the mass conservation. Thus we
only need to use the conservation of linear and rotational
momenta and the first and second laws of thermodynamics to
restrict the motion of the interface.

1. Conservation of linear and rotational momenta

Consider an infinitesimal subinterfaceas shown in Fig.
(a). The forces acting onare either internal traction, which

from the differential geometry that will be used in our model 2Cts at two end points dfand comes from the cumulative

[19,20. Geometry relations:

effect associated with the replacement of a real 3-D interfa-
cial region by a Gibbs dividing surface, or external forces,

t=rq, (1) which act on every point of and come from the action of
each of the two bulk phases. The former we denote by the
k=asq, 2 capillary forcec(s,t). The net effect of the latter we charac-
terize by an interactive forca(s,t) [per unit arc length, Fig.
t.=kn, (3)  2(b)] and an interactive momem(s,t) [per unit arc length,
Fig. 2(b)] because the motion of the interface depends on the
ng= —kt. (4)  resulting or combined forces, not on each single force. The
introduction ofa and m is unique to this approach in the
Kinematic relations: sense that the previous approaches in the literature modeled
these forces on either side iofeparately. Since the interface
us= —ko, 5 has zero mass, the other force fields such as the gravitational
force field do not contribute any force to
a;t+Uag=vg, (6)
K+ Uks=vgst+ k2. (7) (a)
[, 52
In Egs.(1)—(7), r is position vectors is arch lengthn is 5 s
the unit normal vectore is the angle between ande;, K is ’ )
curvature, which is the derivative of with respect tes [Eq.
(2)], t is a unit tangent, which is the derivative ofwith
respect tcs, andu andv are the tangentidllongt) and the a (b) s
normal (alongn) components of interface velocity vecter N
(Fig. 1). Hereafter, the subscrigtmeans the derivative with & S )
respect tos holding timet fixed, and the subscrifit repre- m

sents the derivative with respect tdholding s fixed. Thus
Egs.(3) and (4) relatet, n, andk at any point of the inter-

FIG. 2. An infinitesimal subinterfacie
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Applying the conservation laws of linear and rotational

momenta ta yields

fiads+ Lic= 0, (8)

fmds+fr><ads+f rxc=0, (9)
i i ai

where di represents the boundary of For the 2D case, it
consists of two end points of i. Thus

[ 3= &(s2,0) = &(s1,1). Also, [ éds=[Zé(s,t)ds.

Note that our interface has zero mass; the rate of chan

in the linear and rotational momenta iof/anish. This leads
to a simple right side of Eq¢8) and(9). To obtain a local
form of Egs.(8) and (9), change the integrations oveér to

the integrations over by the divergence theorem, which can
be invoked because of our continuous assumption of aﬁ y

guantities along. Then the validity of Eqs(8) and(9) for all
i, with the continuous assumption of all quantities along
allows us to appeal the localization theorem to obtain

a+c,=0, (10

m+r X c=0. (11

A component form of Eqs(10) and(11) can be obtained
by applying Eqs(1)—(4) and decomposing andc alongt
andn. The result is as follows:

o+ 7k+f=0, (12
7s—ok+g=0, (13
o=—m, (14

in which f andg are the normal and tangential components
of a while o and 7 are the normal and tangential components
of c. Note thato causes surface shear andauses surface

tension.

2. The first and second laws of thermodynamics

The dynamics of the interface is determined by three in-

terfacial fields: interactive forcea(s,t), capillary force
c(s,t), and interactive momenin(s,t), which are interre-
lated through the conservation layg&gs. (12)—(14)]. The
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FIG. 3. A two-phase control volumB.

mal disturbancesA review of the literature in this area can
be found in[25]. To avoid this uncertaintgi.e., which theory
more exact to what takes place in reglitye use both heat
flux field and temperature field as the thermodynamic quan-
tities instead of just temperature. It is up to the user to pro-
vide the constitutive relation to relate heat flux to tempera-

Consider a two-phase control volurBeconsisting ofB,

of phase 1B, of phase 2, and interfade(Fig. 3), and let
e(x,t) and S(x,t) be the energy and entropy of bulk phases
per unit area. Then,

f e(x,t)da+f</;ds,
B1+B, 1

J’ S(x,t)da+des
B1+By i

are the internal energy and the internal entropyof
Let q(x,t) and T(x,t) be the bulk heat flux and the bulk
absolute temperature, respectively. Then

(15

(16)

J g-Nds, (17
JB
s 2 -Nds (18

represent the net heat and thermal entropy flux ous dfy
bulk heat conduction acros#, respectively. Heré\ is the
outward unit normal vector ofB.

Neglecting the heat conduction along the interface, the
heat and thermal entropy flux through are those resulting
from the tangential motion of the edge iofSuppose that the
temperatureTl is continuous across the interfagaut we al-

thermodynamics of the interface is described by three scalafow the other bulk fields to suffer jump discontinuities across
valued interfacial fields defined on the interface for all time,the interfacg they can be written as

i.e., the interfacial energyix,t), the interfacial entropy(x,t)

du

and the apparent heat fldx,t). There exists a fundamental f (19
J|

guestion regarding the nature of heat conduction. The classi-
cal theory(the Fourier law regards heat conduction as a
diffusion process, which leads to a paradox, namely, an inand
finite velocity of heat propagation for a time duration. The
duration is of the order I0—10 *? s for homogeneous sub- J’ T-1g

stance[21] and 10°3-1C s for nonhomogeneous materials gi u-

[22,23. This paradox was first observed by Cattan2d.

Since then, several theories have been developed to eliminate For the case that the motion of the bulk material can be
it. The theory ofsecond soundfor example, assumes that neglected comparing with the motion of the interface, the
heat moves as a wave rather than a diffusion process tpower expended oB by the bulk forces acting odB is
eliminate theparadox of instantaneous propagation of ther- negligible. As well, the interactive foraand momentn do

(20
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not expend power oB since they are internal 8 by noting d

that they come from the mechanical action ioof each of g j_lﬂ d5=jAUl//+Ji¢t(5,t)dS=J’AUl//+ J,(w"—uws)ds
two bulk phases. Therefore, the only source of powerBor ' a ! a !

comes from the capillary forces an, which can be written

as =Liu¢/+Ji¢° dS—fiUlﬂs ds=Ji(¢°+ Yug)ds

f,_C'V- (21 =fi(t//°— Ykv)ds (26)

) ) _ ~in which Eq.(5) is used, and superscript O denotes the full
The first law of thermodynamics requires the conservationjme derivative.

of energy forB, yielding Also

d V= =
a j eda+j¢ds :_f q~Nds+f ﬂu_*'f -~ Lic v Liru-i-Lia'v LiTu+Ji(a'Sv+a'vs)dS (27)
dt | Je,+s, i B di ai

(22) in which the divergence theorem is used. Using @4) and
vs=a® (angular velocity, Eq. (27) can be written as
The second law of thermodynamics requires that the entropy
generation, which is the sum of the change of entrop of y— _ _ 0
and the outflow of entropy frorB minus the thermal entropy Lic v Li e fi(var kv = oaT)ds. 28
flux, is never less than zermote that the work exchange
does not cause change in entrppphis leads to Applying Egs.(26) and (28) to Egs.(24) and (25) yields

f{wo—aao—(¢— kv +(f—[e])v+[q]-n}ds

d
— f Sda—i—fnds z—f T’lq-Nds+f T 19u,
dt By+B, i B al

@3 +f(¢— 9—r)u=0, (29)
al

which must hold for all two-phase control volunie

To obtain an interfacial form of the first and second laws 0 p. —1r a1, f et
of thermodynamics, we shrink to i by letting B,—0 and f,{‘ kv =[S]v+T7[q]-n}ds+ ﬁi(b T 19)u=0
B,—0. This yields (30)

for all subinterfaces.

i J"p ds+f U1//=f[e]v ds—f[q]-nds _N_ote thgt Eqs(29) and(30) must hold for arbitraryi and
dt J; Pl i i t; it is obvious that

Yy=30+r, (31

+f1‘}u+f'c~v, (24
! ’ =T 19, (32

_ which represents energy balance and entropy at the edge of
f T *du, the subinterface. Equatig1) also states that the interfacial
(25) energy in terms of per unit arc length is equal to the sum of
the apparent heat flux and surface tension.
Combining Eq.(31) with Eq. (32) gives

d
- fb ds+f UI?I[S]U ds—folq-n ds+
dt J; g i i

al

which are valid for all moving subinterfacés Here [e] is
the jump ine across the interface, etc., ands the normal =F, (33)
velocity component of the interface.

The interfacial first and second law24) and (25) repre- ~ with
sent the first and the second laws for a subinterfa¢gy ds
and [;.ds are the energy and entropy bfwhile [,uy and F=y—T. (34)
[ ;ue represent the outflow rate of interfacial energy and en- .
tropy from i. f;[€]v ds and [;[S]v ds represent flows of as the Helmholtz free energy of the interface.
bulk energy and bulk entropy intowhile —f;[q]-n ds and By Egs.(31) and(32), Eqs.(29) and(30) reduce to
— ;T Yq]-n ds account for heat and thermal entropy flux to
i by bulk material through heat conductiofi,; Ju and f_Yds= 0, Vi (35
[T~ 19u represent heat and thermal entropy flux tay the :
tangential motion ofi. [,;c-v is the power expended arby

the capillary force. fEdszo Vi (36)
Note that ’
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1
Y(sg,7)=Ilim —f Y (s,7)ds (45)
g—0 le
and
1
FIG. 4. A subinterfacé, . E(sg,7)=Ilim — f E(s,7)ds, (46)
e—0 le
where . . .
which yield, after using Eq¥35) and (36),
Y=lﬂO—O'a/O—(lﬂ—T)kv+(f—[e])v+[(ﬂ'n (37) and
and Y (50,7)=0, (47)
E=—tko—[Slv+T Yq]-n. (39
E(sg,7)=0. (48)
To obtain a local form of Eq9.35) and (36), consider a _ _
subinterfacei (7) at arbitrary instantr, which has an arch Sincesy, 7 are arbitrary, we have
lengthe (=0) centered at, (Fig. 4).
Y(s,7)=0, (49
Let
1 2(s,7)=0, (50)
IlSZ‘Y(SO1T)_; JiSY(S,T)dS, (39) |e,
1 Y= oa®— (y—rkv+(f—[e])v+[q]-n=0, (51)
|2€= E(So,’]’)——f E(s,7)ds. (40
& i L~ kv —[SJv+T q]-n=0. (52)
Then By the third law of thermodynamicsT>0. Inequality
I, =0 (41) (52) can thus be rewritten as
TO—Tkv—T[S]v+[q]-n=0.
|2E>O- 42 L tkv—=T[SJv+[q]-n=0 (53

Since Y(s,7) and Z(s,7) are continuous ol by our funda-
mental assumption,

Iy =

1
- fis[Y(so,r)—Y(s, 7)]ds

1
<> fisga[wso,r)—wsm)]lds

=max[Y(sp,7)—Y(s,7)],

Sel,

1
IZS:‘E f. [E(sg,7)—E(s,7)]ds

1
< —
€ isSEiS

max[E(so,7)— E(s,7)]|ds

=max[E(sy, 7 —E(s,7],

sei,
which tend to zero as—0. Hence we have
(43
(44)

ase—0.
To satisfy Eqs(41)—(44), we have that

To eliminate the vector-valued, which is a quantity asso-
ciated with the bulk field, subtracting EG:3) from Eq.(51)
yields another form of the second law of thermodynamics

FO—oal+ T2+ (f—[7])v=<0, (59
where 7 is the bulk Helmholtz free energy, i.e.,
n=e—TS. (55)

C. Constitutive equations

Equationg12)—(14) and(51) form the conservation equa-
tions of the thermodynamic model. To be truly useful for the
description of the moving interfaces, they must be supple-
mented by constitutive equations to reldéteg, o(m), #(F),
¢, andq to the kinematic and thermal quantities of the inter-
face. Such constitutive equations are usually provided
through some empirical laws such as Fourier law of heat
conduction for heat flux and Newton law of stress for New-
tonian fluids. At present, we have no experiments by means
of which we can study the constitutive equations in the
neighborhood of an interface. The previous works then intu-
itively imposed some constitutive equations similar to those
applicable in bulk phases by introducing concepts such as
Newtonian surface fluidgl0]. In the present work, we use
the second law of thermodynamifisequality (54)] to pro-
vide the required constitutive equations. The justification
comes from the fact that the motion of the interface is con-
trolled not only by the conservation laws of mass, linear
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momentum, rotational momentum, and energy, but also by
the other fundamental laws such as the second law of ther-

modynamics.
An examination of the inequalit§64) shows that the sec-

ond law of thermodynamics does not place any restriction on

¢ andg explicitly. However, by Eqs(13) and (34), we can
obtain the required constitutive equations fbandg once
we have constitutive equations &f(7), o, f, and «. The
constitutive equation of] can be provided by several theo-
ries. The classical Fourier law, for example, states that

g=-—KVT, (56)
whereK is the conductivity tensor, and is the gradient.
The inequality(54) indicates that the proper independent
variables arex, v, andT. Consequently, we suppose, as in-
terfacial constitutive equations, that, o, f, and . depend

smoothly on the orientation of the interface through a depen-

dence onea, on the kinematics of the interface through a
dependence on and on the thermal behavior through a de-
pendence off, i.e.,

F=F(a,v,T), f=f(a,v,T),

oc=o(a,v,T),

= a,v,T). (57)

These, with the aid of Eq$13), (14), (31), and(34), induce
additional constitutive equations far g, m, 9, and .
The second law of thermodynami¢s4) requires

(Fo=0)a®+F 0%+ (Fr+ ) To+(f=[7])v=<0 (58)

for all moving subinterfaces that satisfy the conservation

laws. Since the fields, v, T, &% v° andT° can have arbi-
trary values at any point and time, we tak8=0, v,#0,
T°=0, andv=0. Then Eq.58) reduces to

F,(a,0,Tv’<0, Vu#0. (59
This implies that
F=F(a,T). (60)
Similarly, we have
o=F,a,T), (61
1= —F(a,T). (62)
Applying Egs.(60)—(62) into Eq. (58) yields
{f(a,w,T)~[7]}v<0, Va, v, andT. (63
Let
¢()=[7n]-f(a,v,T). (64)
Thus
d(v)v=0, (65)

which implies thaté(v)v has a minimum ab =0. This re-
quires
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d(¢v)
do | "0 08 W00,
which gives
¢(0)=0. (66)
Hence,
v(ia,v,T)= ¢iv) (67)
is well defined. This concludes that
d(v)=v(a,v,Tv,
f(a,v,T)=[7n]—v(a,v,T)v. (68)

Note thaté(v) andv always have the same sigEq. (65)];
Eq. (67) concludes that

v(a,v,T)=0. (69
Conversely, Egs(60)—(62), (68), and(69) yield Eq. (58) in
all processes.

By Egs.(2), (13), (33), and(61), we have

9=u(a,T)Ts, (70)

which is not zero if temperature varies along the interface.
Also, Eq.(34) yields
v=F(a,T)—TF(,T). (71

Equations60)—(62), (68), and(71) show that(1) F, o,
and ¢ cannot depend om explicitly, (2) surface shear is
always equal to the derivative &f with respect tax, and(3)
the interfacial entropy is always equal to the derivative Bf
with respect toT. These are important because they imply
that (1) «(F), o, ¢, and ¢ in the dynamic situation assume
their values in the static situatidthis will significantly sim-
plify the experiments to determine thgn2) a gradient ofF
or 7 will cause surface shear, afi@) the variation ofF or 7
with temperaturel’ will result in an interfacial entropy.

By Egs.(32), (51), (60)—(62), and (68), the left side of
Eq. (30) reduces tof,»v? so thatvv? is the total entropy
generation per unit length due to the irreversibility of the
process. Like conductivity and viscosity, is to be deter-
mined through experiments. However, for small values ,of
we can approximate{a,v,T) by »(«,0,T). On the other
hand, we can impose other principles such as frame indiffer-
ence to obtain the form of dependencevain «, v, andT. It
is our belief that all the details concerning constitutive equa-
tions can be obtained through imposing enough fundamental
laws.

By collecting all results, we have the conservation equa-
tions (12)—(14), (51) and the constitutive equation82),
(33), (60—(62), and(68)—(71) for the moving interfaces. All
these, with the kinematic relatioiS)—(7), form a completed
thermodynamic model of the moving interfaces. They can be
used to predict and control the motion, shape, and character-
istics of the moving interfaces. They can also be employed as
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the microscopic model for interfaces in the multiphase flowsmodel consists of three basic parts: the conservation laws,
and as the boundary conditions in moving and free boundarthe second law of thermodynamics, and constitutive equa-
problems. tions. The conservation laws, the constitutive equations, and
some kinematic relations from the differential geometry to-
gether form the governing equations of moving interfaces.
lll. CONCLUDING REMARKS Such equations can be used to predict and control the mo-

A systematic, continuum approach is set up to develop th#0n. shape, and characteristics of interfaces appearing in
thermodynamic model of the moving interfaces. The ap-various natural and industrial processes.
proach differs from the others mainly in three aspe¢is:
using zero-mass Gibbs interfaces as the approximation of the
real 3-D interfacial region(2) introducinga andm to reflect
the net action of two bulk phases on the interface; &)d This work was supported in part by the Natural Sciences
employing the second law of thermodynamics to derive theand Engineering Research Council of Canada through a stra-
required constitutive equations. tegic grant to a research group headed by Professor K. Nan-
The proposed approach is used to develop a thermodydakumar. The author is grateful to Professor K. Nandakumar
namic model for two-dimensional moving interfaces. Thefor his valuable comments.
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